Polyspace® Model Link Products 5
User’s Guide

) MathWorks

LN N

How to Contact MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Polyspace® Model Link Products User’s Guide
© COPYRIGHT 1999-2011 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www .mathworks.com/patents for more information.

Revision History

March 2009 Online Only Revised for Version 5.3 (Release 2009a)
September 2009 Online Only Revised for Version 5.4 (Release 2009b)
March 2010 Online Only Revised for Version 5.5 (Release 2010a)
September 2010 Online Only Revised for Version 5.6 (Release 2010b)

April 2011 Online Only Revised for Version 5.7 (Release 2011a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Getting Started with Polyspace Model Link

Products
1

Overview of Polyspace Model Link Products 1-2
Getting Started with Model Link Products 1-3
OVeIVIEW o vttt ettt e e e 1-3

Creating a Simulink Model and Generating Production
Code .ot e e 1-4
Starting the Polyspace Verification 1-11
Fixing an Error in the Design and the Simulink Model ... 1-13
Base Workspace vs. Polyspace Data Ranges 1-18
Setting Data Ranges Using Block Parameters 1-26

Advanced Setup Options

2

Advanced Setup e 2-2
Handwritten Code i, 2-2
Target Production Environment 2-5
Creating a Polyspace Configuration File Template 2-7
Data Range Management 2-9
Main Generation for Model Verification 2-11
Annotating Blocks to Justify Known Checks or Coding-Rules

Violationsouiiii i e 2-13

3

Polyspace Utilities, 3-2

iii

Overview of Polyspace Utilities 3-2
Configuring Polyspace Project 3-4

Polyspace Commands Available in Batch Mode as
M-Functions it 3-6

Archives Files Produced for the Polyspace

Verification 3-8
Template files located in MATLAB installation
directory\polyspaceN\iiiiiii 3-8
Files used in the model directory 3-9
Auto-generated files in the model directory 3-9

Code Generator Specific Information

4 |

Polyspace Model Link SL Product 4-2
L0 =) T 1= 4-2
Subsystems e 4-2
Default Optionscciiiiiii i, 4-2
Data Range Specification 4-3
Code Generation Optionscuiiiiinnneeennnn. 4-3
Polyspace Analysis Options c.... 4-5

Polyspace Model Link TL Produet 4-12
L0 =) T 1= 4-12
Subsystems e 4-12
Data Range Specification 4-12
Lookup Tables 4-13
Code Generation Optionsciiiiinnneeennnn. 4-14

Glossary

iv Contents

Getting Started with
Polyspace Model Link
Products

e “Overview of Polyspace Model Link Products” on page 1-2
® “Getting Started with Model Link Products” on page 1-3

1 Getting Started with Polyspace® Model Link Products

1-2

Overview of Polyspace Model Link Products

This manual describes how to use Polyspace® for Model-Based Design. The
Polyspace Model Link™ SL and Polyspace Model Link TL products allow you
to launch a Polyspace C verification from a Simulink® model associated with
Embedded Coder™ software, or dASPACE® TargetLink® software.

Polyspace Model Link SL and Polyspace Model Link TL products provide
automatic error detection for code generated from Simulink models. It
consists of three principal components:

¢ A Polyspace menu in the Simulink Tools menu.

¢ A Simulink Polyspace library with associated blocks.

e A “Back to Model” extension in the Run-Time Checks perspective of the
Polyspace Verification Environment that allows direct navigation from a
runtime error in the auto-generated code to the corresponding Simulink
block or Stateflow® chart in the Simulink model.

Getting Started with Model Link Products

Getting Started with Model Link Products

In this section...

“Overview” on page 1-3

“Creating a Simulink Model and Generating Production Code” on page 1-4
“Starting the Polyspace Verification” on page 1-11

“Fixing an Error in the Design and the Simulink Model” on page 1-13
“Base Workspace vs. Polyspace Data Ranges” on page 1-18

“Setting Data Ranges Using Block Parameters” on page 1-26

Overview

In this section, you will:

¢ Create a Simulink model and generate production code (For more
information, see the Embedded Coder Getting Started Guide)

e Start the Polyspace verification

1 Getting Started with Polyspace® Model Link Products

Creating a Simulink Model and Generating
Production Code

To create a Simulink model and generate production code:
1 Open MATLAB®, then start Simulink software.

2 Create a simple Simulink model, similar to the one below.

§_| rry_first_code ™ EI@
File Edit Wiew Sirmulztion Format Tools Help
O =ES] » 00 |Nomal |
In1
" x
Cutd
’
In2
Product
Feady 100%: odeds

Create the my_first code model

3 Select File > Save, then name the model my_first code.
4 Select View > Model Explorer.

The Model Explorer opens.

Getting Started with Model Link Products

(2} Madel Explarer [& =)
Eile Edit Wiew TJools Add Help
< dBBXEHEWRHZ OO 4B FOR2A
search: by Name - Name: 2] search
Moded Hierarchy W s | contents oy _first_code | Code Generation
4 [H] simulink Root rmm e | S O General | Report | Comments | Symbols | Custem Code | Debug | Interface -
Basewworkspace _
! Target selection
- E my_first_code Mame BlockType
B Model workspace & sower System targst file: grt.Hc Browse. ..
Code for my_first_code
& X - @ Data Inpor/Export Language: c v‘
% dvice for my_first_code
X . & Optimization £
j Simulink Design Werifier Build process
iy Configuration jactive) # Disgnostics
Harduware Implementation Compiler optimization level: Optimizations off (Faster builds)
£ il level FF (f: build
& Model Referencing TLC aptinns:
& Simulation Target
2 Walefile canfiguration
Code Generation
@ HDL Code Generation LIEAEESE Gl
Make command: make_rtw
Template maksfils: grt_default_tmf
« . 8
9 Revert Help Apply
4 m » Contenks Search Results

5 Select my_first_code > Configuration, in the Model Hierarchy.
6 Select Code Generation in the Configuration.

The Code Generation configuration parameters open.
7 Select the General tab.

Set the System target file to ert.tlc (Embedded Coder).

1 Getting Started with Polyspace® Model Link Products

1-6

Code Generation

General Report Comments Syrbols Custom Code Debug Intetface SIL and PIL verification I [aR)

.

Target selection
System target file:
Lanquage:
Descripkion:
Build process
Compiler optimizati
TLZ options:
Makefile configur.
enerake mal
Make command:

Template makefilg

Data specification q

|:| Ignore cuskom

E Systern Target File Browwser: roy_first_code IEI U
Systewm Target File: Description: E
asap2.tcle L3AM-ASAPZ2 Dats Definition =
autosar.tlc AUTOIAR
cle6.cle Target Support Package [(for
clab_grt.tle Target 3upport Package (fDrE
d e |4

ert.tlc Create Visual C/C++ Solutic—
ert_shrlib.tleo Embedded Coder [(host-based
gro.cle Generic Real-Time Target
gro.tlco Create Visual C/C++ Solutic
grt_malloc.tlo Generic Real-Time Target wi
grt_malloc.tlc Create Visual C/C++ Jolutic
idelink ert.tlec IDE Link ERT -
4| i 3
Full Marme: CWProgram Files (86 WMATLAR\R2011aY twhherthert.tlc
Template Makefile: ert_default_tmf
Make Cormmand: make_rbw

[CIK l [Cancel] [Help] [Apply l

Elp Apply

Change the code generator to Embedded Coder™ software

8 Select the Report tab.

9 Select Create code-generation report, then select Code-to-model

Navigation.

Getting Started with Model Link Products

Code Generation

zeneral Fepork Comments Symbals Custom Code I Debug Interface SIL and PIL Verification AR

Create code generation report Launch report automatically

Mavigation
Code-ta-model

[[] Modekto-code | Configure...

m

Traceability Report Contents
[Eliminated | virtual blocks
[] Traceable Simulink blocks
[] Traceable Stateflow objects

[Traceable MATLAE functions

J Revert Help J I Apply

Set Report Settings

10 Select the Templates tab.

1-7

1 Getting Started with Polyspace® Model Link Products

Code Generation

Comments | Symbuols I Custom Code Debug Interface SIL and PIL Yerification I Code Style | Temnplates m .

Code kemplates

Source file {*.c) template: ert_code_template.cgt IBrowse... H Edit... I

Header file (*.h) template: ert_code_template.cgt IBrowse... H Edit... I

m

Data templates

Saource file (*.c) termplate: ert_code_template.cqt IBrowse... H Edit... I

Header file (*.h) termplate: ert_code_template.cqt IBrowse... H Edit... I

Custom templates

File customization template: example_file_process.tlc IBrowse... H Edit... I

D Generate an example main program

.‘) Revert Help I I Apply

Templates Tab

11 In the Custom templates section, clear Generate an example main
program.

12 Select the Interface tab.

1-8

Getting Started with Model Link Products

Code Generation

General Repart I Comments I Syrnbols I Custon Code I Debug | Interface SIL and PIL Verification I Sk

Software environment

Target Function librarys ICSQ,I'CQEI (ANST) v]

Ltility code generakion: I.ﬁ.uto -]

Support: Floating-point numbers non-finite numbers complex numbers =
absolute time 7] continuous time [nan-inlined S-funckions

[] wariable-size signals

Multivward byvpe definitians: ISystem defined - I

Code interface
[T GRT compatible call interface Single outputfupdate Function Terminate function required

[Generate reusable code

Generate preprocessar conditionals: IUse local settings -

Suppress error stakus in real-time model data structure [<ombine signalistate structures

[Configure Madel Functions I

Daka exchange

[maT-file logging

Interface: INDHB - ‘

J Revert Help I I Apply I

Interface Tab

13 In the Code interface section, select suppress error status in real-time
model data structure.

14 Click Apply in the lower-right corner of the window.
15 In the Configuration Preferences, select Solver.

The Solver configuration parameters appear.

1-9

1 Getting Started with Polyspace® Model Link Products

1-10

Contents of: my_first_code

‘ Solver

Column Wiew: | Default w | Show Detals 9 objeck(s)

Simulation time

Mame
& Solver
& Data Import/Export
& Optimization
& Diagnostics
@ Hardware Implementation
& Model Referencing
& Simulation Target
& Code Generation
& HOL Code Generation

ElockType

Start time:

Solver options

Automatically handle rate transition for data transfer

Higher priority value indicates higher task priority

Contents Search Results

0.0 Stop time: 10,0
Type: |Fixed-step - | Solver: |discrete {no continuous states) -
Fixed-step size {fundamental sample time): auto
Tasking and sample time options
Periodic sample time constraint: |Unc0nstrained - |
Tasking mode for periodic sample times: |Aut0 - |

Revert Help | | Apply

Choose Fixed-step Solver

16 In the Solver options section, set the solver Type to Fixed-step. Then, set
the Solver to discrete (no continuous states).

17 Click Apply.

18 In the Simulink Model Window, select Tools > Code Generation > Build
Model to generate the production code.

19 Save your Simulink model.

Getting Started with Model Link Products

Starting the Polyspace Verification

To Start the Polyspace verification:

1 In the Simulink model window select Tools > Polyspace > Polyspace

for Embedded Coder.

The Polyspace Analyzer dialog box opens.

u Palyspace Analyzer

[o] & (=)

— Analysis Parameters

Subsystem my_first_code_ert_rbwrmy_first_cods

Results folder |C:\PolySpace_Resultsiresults_my_first_code

l Browse I IFrom Seledion]

Browrse

— Advanced

|:| Sendto Polyspace Server

[7] Ensble sdditionsl file it | =olect Files Praject configuration

— Data Range Management for Mocde!

Infuts Cortextual \
Tunable parameters Specific calibration v
Cutputs Mane -
Mocel Reference
’7 Model reference verification degpth CLrrent model anly - Madel by model verification

Start ‘ l Cancel

Polyspace Analyzer Dialog Box

1-11

1 Getting Started with Polyspace® Model Link Products

Note The subsystem field is automatically populated with the name of
the current subsystem, and the results directory is automatically set to
results_subsystem name. If more than one subsystem is present in the
model, a subsystem selection dialog opens.

2 Click Start to start the verification.

The verification starts, and messages appear in the MATLAB Command
window:

Polyspace Model-Link for Embedded Coder

Version MBD-5.7.0.6 (R2011a)

Preparing code verification

Creating results folder

Analysing subsystem: my_first_code

Locating generated source files:
H:\Documents\MATLAB\my_first_code_ert_rtw\ert_main.c ok
H:\Documents\MATLAB\my_first_code_ert_rtw\my_first_code.c ok

Generating DRS table
my_first_code_U.In1 min max init
my_first_code_U.In2 min max init

Computing code verification options

###.ééarting code verification
The exact messages depend on the code generator you use. However, the
messages always have the same format:
e Name of code generator
¢ Version number of the plug-in
¢ List of source files

¢ DRS (Data Range Specification) information.

3 You can follow the progress of the verification in the MATLAB Command
window, and later using the Polyspace spooler (Queue Manager)) if you
are performing a server verification.

1-12

Getting Started with Model Link Products

Note Verification of this model takes about a minute. A 3,000 block model
will take approximately one hour to verify, or about 15 minutes for each 2,000
lines of generated code.

Fixing an Error in the Design and the Simulink Model

After the verification completes, you can view the results using the Run-Time
Checks perspective of the Polyspace Verification Environment.

Note If you perform a server verification, you must download your results
from the server before you can view them. For more information, see
“Downloading Results from Server to Client” in the Polyspace Products for
C User’s Guide.

To view your results:

1 In the Simulink model window select Tools > Polyspace > Polyspace
Utilities > Open results.

After a few seconds, the Run-Time Checks perspective of the Polyspace
Verification Environment opens.

1-13

1 Getting Started with Polyspace® Model Link Products

Review Details Review Statistics
..])
~* Palyspace - Ch\PolySpace_Results\results_my: first_code\RTE_px_rr|,first_code LAST RESULTS.rte

File Edit Run Rewview Options Window Help

HEod e eE 0l @k, . |p

sEE1|L

Case sensitive

whale ward ¥ | @ Praject Marfiger <% Cading Rules |'—'}'- Ruri-Time Checks

£
k,TYE | .,Y | E{Y | :,Y S,Y is' illj,lj = Coding review progress Count Progress
Procedural entities x| 2]« mry_first_code.c [/ my_first_code_step | line 38 [column 45 » | |Orange F-OVFL justified [to justify oL 1]
= [l |Red justified | to justify 0fo 100]
L my_first_code ofofi1|o wy_first_code_¥.0utl = wy_first_code U.Inl * wy first_code U.InZ; Gray justified] to justify lofo 100

ef_main.c Classification Status Justified Comment Orange]ust|!’|ed.,i ta Justify ot 0
-] ‘ Software reliabilicy indicator Z3i24 95,

my_first_code.c 1 -

m

- _init_globals ()
mproven : operation [*] on float may owverflow (on MIN or MAX bounds of FLOJ

operator * on type float o4
B my_fist_code_step () 1 +308 +208

left: -1.7377E o L.7977E i
» : : :

s my_fitst_sode_initializ

) right: [-1.7977E °%% .. 1.7977E7%"%
L my_fitst_code_termina 208 vo0n
result: full-range [-1.7977E .. 1.797E 1 2
kOl " | v 4 Check Details | 5~ Expanded Source Code | il Review Statistics
__polyspace_stdsfubs.c — - '
—_polyspace_mainfe
my_first_code.c | ert_main.c |
1B
26 /% Real-tine model */
27 RT_MODEL wy_first_code uy first code M ;
28 RT _MODEL my first code *const my first code W = emy firat code M :
29
30 /% Model step function */ . an
31 void wy firac code_step(woid) il Q N-SHR
32 { Al
33 /% Dutport: '<Root:/0utl' incorporates: Variables ? Re.. #Wiite W.T. R.T.
34 * Inport: '<Root>/Inl' my_fiist_code -
35 * Inport: '<Root>/Ini' ~~art_main.OvenunFlag a 0
36 * Product: '<Root:/Product’ my_first_code.my_first_code_hd 1 1 =
37 i fir st_cods_M N
38 wy_firat code ¥.0utl = wy first code T.Inl ¥ wy first code U.InZ; ‘ my_fist_code._init_globals
bt } [=-mmy| first_code.my_first_code_M_| 0O 1
d 1 G ‘?_D o R . = A my_fist_code.my_fist_c -
|2 Run-Time ch 2 assistant Checks| | <[i 3 Ik 1] 3
| 0% | my_First_code Source file: stdio.h skdio.h Ling: 1 Calumn: unknown
Run-Time Source Variable Call
Checks code Access Hierarchy

2 Type CTRL-N to go to the next error.

1-14

Getting Started with Model Link Products

= Run-Time C

| 4| | o |

Procedural entities
L my_first_code

---e t_main.c

I_é_l---myr_fi rst_code.c
~_init_globals ()
[H-my_first_code_initialize (0
E-rmy_first_code_step (0

[+-stdio.h
[polyspace_ stdstubs.c
[polyspace_main.c

comy_first_code_terminate ()

4 | m

100
&7

100
100

Lire

42
21
33
1]
33
a2

Orange Check in Polyspace® Run-Time Checks

3 Click on the orange check.

The Review Details pane shows information about the orange check, and
the Source pane shows the source code containing the orange check.

1-15

Getting Started with Polyspace® Model Link Products

1-16

" Review Details
41l o
mey_First_code.c [my_first_code_step | line 33 [column 45 -
ny first code ¥.0utl = my first code T.Inl * my firat code T.InZ;
|assification Skatus Justified Commenk

2] | =

1

IIhprowen : operation [*] on float may owerflow [on MIN or MiX bounds of FLOATGE4)
operator ¥ on type float 64

left: [-1.7977E °°% . 1.7977E °"%j B
right: [-1.7977E °°% .. 1.7a77E "%
result: full-range [-1.7977E °°0 .. 1.7977E "% -
= Source
my_First_code.c ert_main.c| 1 [&
26 /% Real-time model #/ -
a7 ET MODEL my first code my first code M ;
25 ET_MODEL my first code *const nmy firast code M = smy first code M ;
29
30 /% Model step function */
3l wold my first code step(woid)
3z i E
33 A% Dutport: '<Root:/0utl' incorporates:
34 * Inport: '<Root:=/Inl'
35 * Inport: '<Root:=/In'
36 * Product: '<Root>/Product’
37 L
38 wy Ffirst code T.0utl = wy first code TU.Tnl * my first code T.InzZ;
39} T -

Potential overflow in the code

This orange check shows a potential overflow of the two entries. Polyspace
software assumes that the values for entries are full range, and their
multiplication can overflow.

Getting Started with Model Link Products

4 To fix this issue, you must return to the model. To go back to the model,
click the blue underlined link (<Root>/Product) immediately before the
check in the Source pane.

The Simulink model opens, highlighting the block with the error.

By first_code [E=8(EEE =5
Eile Edit “iew Simulation Format Tools Help
O = & b o= 100 [Nomal |
In1
X D)
Outt
’
Inz
Froduct
Ready 10034 T=0.00 FixedStepDiscrete

Model with Highlighted Block

5 You now must fix the defect in the model. For example, you may come
to one of the following conclusions:

® It is a bug in the design— The developer should saturate the output,
providing this functionally makes sense bound the entries in the model,
by adding blocks which will test the input values, and bound them
accordingly.

¢ It is a bug in the specifications — The developer should bound the
entries, by giving them a range in Simulink software that Polyspace
verification can take the ranges into account and turns the code green.

1-17

1 Getting Started with Polyspace® Model Link Products

1-18

Base Workspace vs. Polyspace Data Ranges

After you examine the model, you can see a block whose signal ranges are not
in the expected range.

e Ifits block is supposed to be robust against this range, it is a design bug.
Should the previous block be saturated? Should the signal be bounded
with a “switch” block? It is up to the developer to decide the appropriate
change in the model

e [f the range is an input range of the model, the developer may wish to
give this information to the Simulink model, so that Polyspace tools can
use that range as an entry.

Creating Signals with ExportedGlobal Storage Class
Before creating bounded signals in the base workspace, you must configure

your Simulink model to use input signals with the ExportedGlobal storage
class.
To set the storage class:

1 Right-click the signal-line from the In1 block, then select Signal Properties.

The Signal Properties dialog box opens.

Getting Started with Model Link Products

-
E Signal Properties: my_entryl

signal name: my_entry1]

[7] signal name must resolve to Simulink signal object

Logging and accessibility | Code Generation

Documentation

[] Log signal data [~ Test point
Logging name

Use signal name

my_entryl
Data
Limit data points to last: |5000
Decimation: 2
[0K J [Cancel] [Help] [Apply

e

2 In the Signal name field, enter my_entry1.

3 Select the Code Generation tab.

1-19

1 Getting Started with Polyspace® Model Link Products

1-20

rﬂ Signal Properties: my_entryl ﬁ1

Signal name: my_entryl
[7] signal name must resolve to Simulink signal object
| Logging and accessibility | Code Generation | Documentation |
Package: [Simulink v] ’ Refresh]
Storage class: [ExportedGIobaI v]
Alias:

0K l [Cancel] [Help] [Apply

4 In the Packages drop-down menu, select Simulink.

5 In the Storage class drop-down menu, select ExportedGlobal.

6 Click OK to save your changes and close the dialog box.

7 Repeat steps 1-6 to create signal my_entry2 for the In2 block signal.

Setting Signal Ranges

Since your signals now have the ExportedGlobal storage class, you can set
ranges for the signals in the base workspace.

To set the ranges for your signals in the base workspace:

Getting Started with Model Link Products

1 Select View > Model Explorer to open Model Explorer.
2 In the Model Hierarchy, select Base Workspace.

3 Create two signals:
* my_entry1
® my_entry2

4 Set the Minimum value for each signal to -15.
5 Set the Maximum value for each signal to 15.

6 Set the storage class for each signal to ExportedGlobal.

@Model Explorer E@

File Edit “iew Tools Add Help

c tmBRX BHELEHMZ F00 @4R Fa2A

Search: by MName - Mame: |ET Search
Mode! Higrarchy % % Contents oft Base Waorksps | Simulink.Signal: my_entry2
4 Simulink Root -
= Column View: ShowDetails Zobieci(s) ~ Datatypei auto -

E Base Workspace

4 ﬂ my_first_code® Mame SourcePort SignzlPropagation Complexity:

ﬁ Model Warkspace £ my_entryl

d .@ Code for my_first_code Dimensions: -1 Dimensions mode:
- £ my_entry2
@ Advice for my_first_code

Sample time: -1 Sample mode!
(3 simulink Design Verifier o o -

8y Configuration [Active)

IMinirmum: -15 Maximurm: 15

Initial value: Units:

m

Code generation options

Skorage class: |ExportedGlabal -]

Alias:

Description:

4 1 b

Revert J l Help] l Apply

4 [} 2 Contents | Search Results

Signals in the Base Workspace

7 Click Apply.

1-21

1 Getting Started with Polyspace® Model Link Products

1-22

Your model should now look like the following example, with signals on
entries:

§_| rey_first_code_bounded EI@
File Edit ‘iew Simulation Format Tools Help
O = & b o= 100 [Nomal |
? mry_entry 1 !
n
x ()
Out1
a mry_entry? !
In2
Froduct
Ready 10034 FixedStepDiscrete

Model with ExportedGlobal signals my_entry1l and my_entry2
8 Save your model as my_first code_bounded.

Re-Generate Code and Launch the Polyspace Verification Again
To regenerate the code and relaunch the Polyspace verification:

1 In the Simulink Model Window, select Tools > Code Generation
> Build Model to regenerate the code

The entries are no longer part of a structure, they are separated global each.

Getting Started with Model Link Products

E Code Generation Report EI@

17 #inc lude "mv_f irst_code_bounded. h'r

Back Forward ig #include "my first code bounded private.h"

19

Contents 20 /% Exported block sigumals */
21 real T my entryl: A# '<Root»/Tni' #/

Summary 22 real T my _entryZ: FF "wRookx/Tnz' */

Subsystem Repart 23

Code Interface Report 24 /% External outputs (root outports fed by signals with auto storage)
25 ExternalOutputs_my first_code_b my first_code_bounded_ T:

Traceability Report
26

27 S# Real-time model #/
=28 ET_MODEL my first code hounded my first_code bounded M :

m

Generated Files

[-1Main file 29 RT MODEL my first code bhounded *const my first code bhounded M =
art main.c 30 gmy first code bounded M ;
31
[-1Model files 5z A% Model step Ffuncition */
my first code bounded.c 33 void my first code bounded step (void)
my first code bounded.h - { .
] 35 A% Outport: "<Rootx 0utl' incorporates:
my first code bounded p 35 + Ipport: '<Reoot> Tnil'
my first code bounded 57 # Trport: "sRoot>/Tni"’
. 3a * Droduct: 'zRootr/Product'
[+] Utility files {1) 39 "y
40 my first code bounded ¥.0utl = my entryl & my entryz;
41}
42 bl

4 1 (3 | m 3

Html report generator from Embedded Coder™ Software
2 Select Tools > Polyspace > Polyspace for Embedded Coder.

The Polyspace Analyzer dialog box opens.

1-23

1 Getting Started with Polyspace® Model Link Products

1-24

upolyspace.&nalyzer EIE@

— Analysis Parameters

Subsystem |\my_first_code_ert_rtwimy_first_code [Browyse] [From Selec{ion]

Results folder |COPolySpace_Resutsiresults_my_first_code

— Advanced

[] Enable additional file izt Select Files Project configuration

|:| Send to Polyspace Server

— Data Range Management for Madel

Inputs Cortesxtusl -
Turiable parameters Specific calibration hd
Outputs Mone -]
hoclel Reference
’7 Model reference verification depth Currert modsl only - Model by model verification

Start l [Cancel

Polyspace Analyzer Dialog Box
3 In Results folder field enter results my first code bounded.
4 In the Subsystem field, enter my first code bounded.

5 Click Start to start the verification.

6 Once verification is complete, select Tools > Polyspace > Polyspace

Utilities > Open results to view your results.

7 Examine the generated files in the Polyspace Run-Time Checks perspective:

Getting Started with Model Link Products

< Run-Tin
RTE | 4 C 5 £ ooALs
.‘r|.‘r|%‘r|.‘r|.‘r I %=
Procedural entities 1 B my _first_code_bounded.c | my_first_code_bounded_step [line 40 [column 43 -
. my_tfirst_code_bounded o|o|o|15 100 my_first code_hounded ¥.0utl = my entryl * my entryZ;
"'9“_”73‘”-0 0 || Idlassification Status Justified Comment
[=l-m_first_code_bounded.c 5 [100 - l -] L

_init_globals (1 il 1

Operation [F] on float does not owerflow in FLOATE4 rardge
[my_first_code_bounded_in 2 100
operator ¥ on type float 64
[Ebmy_first_code_bounded_std 2 |100

left: [-1.5E°% .. 1.5E° %]
right: [-1.5E'* .. 1.5E"]

result: [-2.2501E'° .. 2.2501E °] o

~my_first_code_bounded_te u] 7 Source
[H-stdio.h o my_First_code_bounded.c| LI e
[#-__polyspace__ stdstubs.c [& -
27 /% Real-time model */
B-_pelyspace_main.c WM 28 RT MODEL my first_code_bounded ny first code bounded M
29 RT_MODEL_my first code_bhounded *const wy first code hounded M =
30 ey firat code_bounded M :
3l
32 /% Model step function */
33 void my_first_code_bounded step(void) -
34 i 1
35 #% Outport: '<Rootk/s0utl' incorporates:
36 * Inport: '<Root:/Inl'
37 * Inport: '<Root:/Inz'
38 * Product: '<Root>/Product'
39 LIy
40 wy first code bounded ¥.0utl = my entryl * my entryz;
14 L1 r a1 1 =
I-—'}- Run-Time Checks ‘ -~ Assiskant Checks| < | 1] | s

Detail of generated files viewed in Polyspace® Run-Time Checks perspective

Everything is green. Polyspace verification has confirmed that no Runtime
Errors are present in the model.

1-25

1 Getting Started with Polyspace® Model Link Products

1-26

Can You Find More Bugs in the Model?

To answer this question, we need to now more about the tool, such as:

® Which windows in the Run-Time Checks perspective contain what
information

® Which colors hide which messages
® How to find bugs using the Polyspace Verification Environment
For more information, see “Reviewing Verification Results” in the Polyspace

Products for C User’s Guide.

Setting Data Ranges Using Block Parameters

In addition to providing data ranges in the base workspace, you can specify
data ranges using block parameters. This method is often easier than creating
signal objects in the base workspace.

To specify data ranges using source block parameters:

1 Double-click the In1 block in your model.

2 The Source Block Parameters dialog box opens.

Getting Started with Model Link Products

E Source Block Parameters: Inl @
Inport

Provide an input port for a subsystem or model.

For Triggered Subsystems, 'Latch input by delaying outside signal’
produces the value of the subsystem input at the previous time step.
For Function-Call Subsystems, turning 'On' the 'Latch input for feedback
signals of function-call subsystem outputs' prevents the input value to
this subsystem from changing during its execution.

The other parameters can be used to explicitly specify the input signal
attributes.

- Signal Attributes

[7] output function call

Minimum: Maximum:

-15 15

Data type: Inherit: auto -

[7] Lock output data type setting against changes by the fixed-point tools
Port dimensions (-1 for inherited):

-1

Variable-size signal: Ilnherit hd

Sample time (-1 for inherited):

-1
Signal type: [auto v]
Sampling mode: lauto v]

J [oK H Cancel H Help]

3 Select the Signal Attributes tab.

4 Set the Minimum value for the signal to -15.
5 Set the Maximum value for the signal to 15.
6 Click OK.

7 Repeat steps 1-6 for the In2 block.

1-27

1 Getting Started with Polyspace® Model Link Products

1-28

Advanced Setup Options

2 Advanced Setup Options

Advanced Setup

In this section...

“Handwritten Code” on page 2-2

“Target Production Environment” on page 2-5

“Creating a Polyspace Configuration File Template” on page 2-7
“Data Range Management” on page 2-9

“Main Generation for Model Verification” on page 2-11

“Annotating Blocks to Justify Known Checks or Coding-Rules Violations”

on page 2-13

Handwritten Code

Files such as S-function wrappers are, by default, not part of the Polyspace
verification. They should be added manually.

To add a file manually:

1 When starting the Polyspace verification, browse and add c-files to your
verification:

Advanced Setup

u Palyspace Snalyzer EE@

— Analysis Parameters

Subsystem | hand_written_code [Browse] [From Seledion]

Resultz folder |H:\Documents'WATLABwvorkihand_writtenresultz_hand_wr

— Advanced
Enable additionsl fie st | Select Files Praject configuration

[7] Send to Polyspace Server

— Data Range Mansgement for Model

Inputs: Cortextusl =
Tunahle parameters Specific calibration -
Outputs Mone -
hadel Reference
’7 Model reference verification depth Current model anly - Model by model verification

1

2 Select additional files by ticking “Enable additional file list,” then click
on “Select Files”.

A C File browser appears to add files to the Polyspace verification.

2-3

2 Advanced Setup Options

B Additional Files =N R (<=

Additional Files To &nalyse

Add

Remave
Remove ..

3 Select the appropriate c file and then start the verification.

2-4

Advanced Setup

Target Production Environment

In Simulink software, you need to configure the target and cross-compiler
specificities.

These parameters include:

e Size of the types for char, short, int (see Hardware implementation of the
model explorer)

Contents of: my_first_code ‘ Hardware Implementation

Embedded hardware (simulation and code generation)

Column View: |Default = | Show Details 9 object(s)

Device vendor: |Generic - | Device bype: |Unspecified {assume 32-bit Generic) - |
Marne BlockType
i Solver Murnber of bits Largest atamic size
char: |8 short: |16 ink: 32
@ Data Import/Export integer: |Char - |
Optimization long: |32 float: 32 double: |64
% Diagnostics floating-point: |N0ne v|
native: |32 pointer: | 32

4% Hardware Implementation
Model Referencing Byte ordering: | Unspecified Signed integer division rounds ko: | Undefined -
@ Simulation Target

& Code Generation

% HOL Code Generation

Shift right on a signed integer as arithmetic shift

Emulation hardware {code generation only)

| Mone

<) Revert Help apply
| Search Results |

Contents

Target selection in Simulink® Configuration Parameters

® Cross compiler flag (-D), and library include (-I), implicitly defined when -
for instance - the cross compiler is setup via the “mex -setup” command.

2-5

2 Advanced Setup Options

‘Command Window

> mEX ==eLup

Please choose your compiler for building external interface (MEX) files:
Would you like mex to locate installed compilers [7]/n?

Select & compiler:

[1] Lece € wersion 2.4.1 in C:\MATLAB)RZ006b)\ays) lcc

[2] Microsoft Visual C/C++ vers=ion 6.0 in C:\Program Files\Microszoft Visual S
[0] None

Compiler: 1

Pleaze wverify your choices:

Compiller: Leec C-Z2.4.1
Location: C:%MATLABYRZOO&b\sygs)lce

hre these correcc?([v]/m):

Teging to update options file: C:\Documents and Sectings\Mare Lalo'Applicatio
From template: C:VHATLAB\RZ0Déb\binh win32\mexoprs) lecoprs. bac

Done .

>.}|

Cross compiler settings in MATLAB® Command Window

Polyspace settings work exactly the same way, you will need to perform the
following tasks (they will be detailed step by step in the next sections).

1 define the same parameters for your cross compiler and target.

2 save this in a template Polyspace configuration file and set this template to

be the default configuration file for every Polyspace verification.

Why does this matter?

¢ For the Polyspace verification, an overflow on an integer type does not

2-6

mean the same when the size of an integer is 16 bits or 32 bits.

Advanced Setup

® Polyspace software needs the cross compiler header files, as they contain
definitions of types, macros, used by the application, whether the
application made of generated code or hand written code.

For more information, refer to and “Option Descriptions” in the Polyspace

Products

for C Reference.

Creating a Polyspace Configuration File Template

To Create a configuration file template:

1 In the Simulink model window, select Tools > Polyspace > Polyspace
Utilities > Configure project.

The Project Manager perspective of the Polyspace Verification Environment

interface opens, allowing you to customize the target and cross compiler.

File

Edit Window Help

Lg ‘ E ‘Search: - ,@ |

-~ Polyspace HM\Documents\MATLAB my_first_code_bounded_polyspace.cfg EI

L2

M_

Marme

Analysis options

Internal name

356 v [0 | taraet
----- Targek operating syskem Linu:z - -05-targek
----- Defined Preprocessar Macros main=rnain_rkwec [:] -0
----- Undefined Preprocessor Macros [:] -l
----- Include [0 |[Hnclude
----- Include Folders E] -1
----- Command)script ko apply to preprocessed files E] -post-preprocessing-command
----- Command)script ko apply after the end of the code E] -post-analysis-command

+|--Compliance with standards

+--Polyspace inner setkings

H--PrecisionfJcaling

[B Nl Nl K]

H--Mulkitasking

Target and cross compiler settings in Polyspace® tools

2 Advanced Setup Options

2-8

2 The -target option defined the size of types. You can configure a custom
target by selecting mcpu (advanced) at the bottom of the drop-down list

3 You can configure cross compiler settings by clicking on the -D options.

[=-Target Compilation
----- Targel processor bype 386 - E] -target
----- Target operating syskem no-predefined-05 o -05-target
----- Defined Preprocessor Macros — [main=main_rtwec, _ restrick__= E] -0
----- Undefined Preprocessor Macros E] -

Note MATLAB MEX_FILE is a directive option that is needed when the LCC

cross-compiler is specified. Defining templates can be use in all subsequent
verification.

4 Save the configuration file and close the interface.
5 Copy the file in <matlabroot>/polyspace/cfg directory

6 Rename it in my_cross_compiler.cfg (It could be any other name).

7 Type in the MATLAB command window:

PolyspaceSetTemplateCFGFile
('C:\MATLAB\R2011a\polyspace\cfg\my_cross_compiler.cfg')

ﬁg g |P|:| lyzpaceletTemplateCFGFile (' CiAMATLAB\RZO11a\ polyspace' cfgi\ny_cross compiler.cfg')

Create a template configuration file

This configuration file can now be used as a template for all subsequent
verification.

Advanced Setup

Data Range Management

There are two approaches to code verification that can produce slightly
different results:

¢ Contextual Verification — Prove software works under predefined
working conditions. This limits the scope of the verification to specific
variable ranges, and verifies the code within these ranges.

¢ Robustness Verification — Prove software works under all conditions,
including “abnormal” conditions for which it was not designed. This can be
thought of as “worst case” verification.

For more information, see “Choosing Robustness or Contextual Verification’in
the Polyspace Products for C User’s Guide.

Polyspace Model Link SL allows you to run either contextual or robustness
verification by specifying how the verification handles data ranges on model
inputs, outputs, and tunable parameters within the model.

To specify data range settings for your model:

1 In the Simulink model window select Tools > Polyspace > Polyspace
for Embedded Coder.

The Polyspace Analyzer dialog box opens.

2-9

2 Advanced Setup Options

upolyspacef‘l\nalﬂer El =] @

— Analysis Parameters

Subsystem | hand_written_code [Browse] [From Seledion]

Resultz folder |H:\Documents'WATLABwvorkihand_writtenresultz_hand_wr

— Advanced

Enable additionsl fie st | Select Files Praject configuration

[7] Send to Polyspace Server

— Data Range Mansgement for Model

Inputs

Contextual)
Tunable parameters Specific calibration -
Outputs None -

hadel Reference
’7 Model reference verification depth Current model anly - Mol by model verification

1

2 In the Data Range Management for Model section, specify how the
verification handles Inputs:

e Contextual (Default) — Uses data ranges defined in blocks or workspace
to increase the precision of the verification.

® Robustness — Assumes all Inputs are full-range values (min. . .max).

3 Specify how the verification handles Tunable parameters:

e Specific calibration (Default) — Use the constant parameter value
specified in the code.

e Generic calibration — Use a parameter range defined in the block or
workspace. If no range is defined, use full range (min. . .max).

2-10

Advanced Setup

4 Specify how the verification handles Outputs:
® None (Default) — No assertion ranges on outputs.

® Global assert — Use assertion ranges on outputs.

Tunable
Input Parameter Cutput

output

Gain

Data Range Management for Model

Note Global assert mode is incompatible with the Automatic Orange Tester.

In general, you should use contextual inputs and specific calibration for
parameters to maximize verification precision, and robustness inputs and
generic calibration for to verify the worst cases of program execution.

Note Data Range Management settings require Simulink Version 7.4
(R2009Db) or later.

Main Generation for Model Verification

When you run a verification using Polyspace Model Link SL, the software
automatically reads the following information from the model:

e initialize() functions
® terminate() functions

® step() functions

2-11

2 Advanced Setup Options

2-12

¢ List of parameter variables

¢ List of input variables

The software then uses this information to generate a main with the following
behavior:

1 It initializes parameters using the Polyspace option -variables
written-before-loop.

2 It calls initialization functions using the Polyspace option
-functions-called-before-loop

3 It initializes inputs using the Polyspace option -variables
written-in-loop.

4 It calls the step function using the Polyspace option
-functions-called-in-1loop

5 It calls the terminate function using the Polyspace option
-functions-called-after-loop

If the codeInfo for the model does not contain the names of the inputs, the
software considers all variables as entries, except for parameters and outputs.

For more information on the main generator, see “Main Generator Behavior
for Polyspace Software”.

Main for Generated Code

The following example shows how to use the main generator options to
generate a main for code generated from a Simulink model.

init parameters \\ -variables-written-before-loop
init_fct() \\ -functions-called-before-loop
while(1){ \\ start main loop

init inputs \\ -variables-written-in-loop
step_fct() \\ -functions-called-in-loop

}

terminate_fct() \\ -functions-called-after-loop

Advanced Setup

Annotating Blocks to Justify Known Checks or
Coding-Rules Violations

You can place annotations on individual blocks in your Simulink model
that inform Polyspace software of known run-time checks or coding-rule
violations. This allows you to highlight and categorize checks identified in
previous verifications, so that you can focus on new checks when reviewing
your verification results.

The Polyspace Run-Time Checks perspective displays the information that
you provide with block annotations, and marks the checks as Justified.

To annotate a block:

1 In the Simulink model window, Right-click the block you want to annotate.

Polyspace * Edit Polyspace annotation in current block
Copy Polyspace annotation from current block
Paste Polyspace annotation to current block
Delete Polyspace annotation from current block

2 Select Polyspace > Edit Polyspace annotation in current block.

The Edit Polyspace Annotation dialog box opens.

2-13

2 Advanced Setup Options

n Edit Polyspace Annotation El' =] '@

— Edit Polyspace annotation for current block

Select annotation kind

(@ RTE check annotation () MISRA rule annotation

Select RTE check kind OVFL Overflow -
Or
Enter a list of checks

Classification Low =
Status Justify with annotations adl
Comment |

l OK l l Cancel

3 Select the type of annotation:

e RTE check annotation

e MISRA rule annoatation
4 Select the type of RTE check or the coding rule you are commenting.
5 Select a Classification to describe the seriousness of the issue:

e High
* Medium
e Low

* Not a defect

2-14

Advanced Setup

6 Select a Status to describe how you intend to address the issue:

Fix

Improve

Investigate

Justify with annotations

No Action Planned

Other

Restart with different options

Undecided

7 In the comment box, enter additional information about the check.

8 Click OK.

The Polyspace annotation is added to the block.

W) my fs_code [e)
File Edit View Simulation Format Tools Help
OD)eEd&E & L |1D.D [Nomal |
Co—
In1
x
Outl
In2
Product

Polyspace annotstion

Ready 100%

FixedStepDiscrete

2-15

2 Advanced Setup Options

2-16

Polyspace Utilities

e “Polyspace Utilities” on page 3-2

e “Polyspace Commands Available in Batch Mode as M-Functions” on page
3-6

e “Archives Files Produced for the Polyspace Verification” on page 3-8

3 Polyspace® Utilities

3-2

Polyspace Utilities

In this section...

“Overview of Polyspace Utilities ” on page 3-2

“Configuring Polyspace Project” on page 3-4

Overview of Polyspace Utilities

The Polyspace utilities menu allows you to access the options in the Polyspace
Library directly from the Simulink model window.

To access the utilities menu, select Tools > Polyspace > Polyspace
Utilities from the model window.

Open results
Configure project
Stop local werification

Launch spooler

Daon't use automatic stubs

Dan't check solver

Help
Shout Polyspace

The Utilities menu contains the following options:

® Open results — Opens the Run-Time Checks perspective with the last
available results. You can then navigate directly from the verification
results to elements in the Simulink model. If the verification ran on the
server, you must download your results before selecting this option. Do not
change the proposed directory during download.

Configure project — Opens the Polyspace configuration dialog, for more
information see the next section, “Configuring Polyspace Project” on page
3-4.

Polyspace® Utilities

Stop local verification — Stops a verification running on the local
machine. If the verification is run on the server, this option only works
during the compilation phase before the verification is sent to the
server. However, you can click the Launch spooler button and stop the
verification from the spooler dialog.

Launch spooler — Opens the Polyspace spooler. For more information, see
“Running Verifications on Polyspace Server”in the Polyspace Products for
C User’s Guide.

Don’t use automatic stubs — Specifies that the verification will not
generate stubs. By default, Polyspace verification stubs all functions.
Using this option allows you to use manual stubbing. For more information,
see “Stubbing”in the Polyspace Products for C User’s Guide.

Don’t check solver — Specifies that the model be verified regardless of the
type of solver selected. To ensure optimal precision and performance, the
software checks that the model uses a fixed-step discrete solver. Selecting
this option disables this check.

Help — Opens the Polyspace documentation.

3-3

3 Polyspace® Utilities

3-4

Configuring Polyspace Project

Selecting “Configure project” opens a simplified version of the Polyspace
Project Manager that allows you to customize your project Configuration.
For example, you can set options such as the target processor type, target
operating system, and compilation flags.

The first time you open the configuration, the following options are set:

-0S-target no-predefined-0S
-results-dir results

Other options are automatically configured depending on the code generator
you use. For more information, see Chapter 4, “Code Generator Specific
Information”.

- Paolyspace H\Docurments\SATLAB my_first_code_boun... EI@

File Edit “WWindow Help

H | j |Search: = ’@ ‘

L7

Mame Yalue Internal name

Analysis opkions
El-zeneral

----- gend to Polvspace Server -SEIEF
----- Add to results repository [E -add-to-results-repository
----- keep all preliminary results files 0 -keep-all-files
----- Caloulate code metrics 0 -code-metrics
[E-Repart Generation [l
----- Report template name Developer -report-kemplate
----- Cukput Format RTF -report-output-Format

t]- TargekCompilation

t--Compliance with standards

H-Precision)Scaling
H-Multitasking

£
[
[+-Polyspace inner settings
[
[

Polyspace Configuration Dialog Box

Polyspace® Utilities

Select the Project properties icon ﬂ in the toolbar to open the Project —
Properties dialog box.

-

~* Polyspace Project - Properties @
Project definition and location

Project name: my_First_code_polvspace
Version: 1.0

Author; (username

Default location

Location: |H:\DocumentsiiMaTLAE),

Project language
Z

C++

Back Mext | Finish | | Cancel

3 Polyspace® Utilities

Polyspace Commands Available in Batch Mode as

M-Functions

You can also run the following commands from the command line.

Command

Description

PolyspaceForEmbeddedCoder

Launch Polyspace verification on code generated by
Embedded Coder software

PolyspaceForTargetLink

Launch Polyspace on code generated by TargetLink

PolyspaceSpooler Inspect the queue of the remotely sent verification over the
server
PolyspaceViewer Launch Polyspace Verification Environment Run-Time

Checks perspective

PolyspaceSetTemplateCFGFile

Select a template file in batch mode

PolyspaceGetTemplateCFGFile

Get the currently selected template file (empty by default)

PolyspaceReconfigure

In case of a Polyspace release update without enabling the
MATLAB plug-in

PolyspaceAnnotation

Add Polyspace annotation directly to block in Simulink
model. Annotation then appears in Polyspace results.
You can annotate either run-time checks or coding rule
violations, and provide a classification, status, and
comment for each annotation.

ver

Displays the Polyspace For Model-Link Version number
along with other MathWorks product information

Example with Embedded Coder product:

Suppose that you open a Simulink model with the name example.mdl.

Polyspace® Commands Available in Batch Mode as M-Functions

Enter PolyspaceForEmbeddedCoder ('example') in the MATLAB Command
window.

The verification starts.

3 Polyspace® Utilities

Archives Files Produced for the Polyspace Verification

In this section...

“Template files located in MATLAB installation directory\polyspace\” on
page 3-8

“Files used in the model directory” on page 3-9

“Auto-generated files in the model directory” on page 3-9

Template files located in MATLAB installation
directory\polyspace\
When a verification is first performed the tool copies the following two files

into the local model directory. On subsequent verifications the files are not
copied again meaning it is OK to model the copies in the model directory.

e cfg\templateEmbeddedCoder.cfg — This file is copied to the
model_directory/model_name-polyspace.cfg at the start of the
first verification of the model. It contains the template Polyspace
configuration settings to support the TargetLink code generator. The
templateTargetLink.cfg file can be updated with site specific settings, to
ease verification of new models.

A MATLAB command exists to change the name/location of the file which
contains the template configuration:

PolyspaceSetTemplateCFGFile(config_filename)

This is most useful when the Polyspace verification is started as part of an
automated process. Here the process would set the template configuration
file to use, erase the local copy in the model directory and then start the
Polyspace verification.

® stub\ppcom_ec.sh— This file is copied to the model_directory/ppcom_ec.sh
at the start of the first verification of a model. The file is not recopied
for subsequent verifications. It is used to stub lookup table types (only
interpolation, not extrapolation) to improve the accuracy of verification
results.

Archives Files Produced for the Polyspace® Verification

Files used in the model directory

® model-name-polyspace.cfg — As mentioned above
this file is copied from the MATLAB installation
directory\polyspace\cfg\templateEmbeddedCoder.cfg file the first time
a verification is run on a model. It is subsequently modified by the
Project Configuration block, or the Configure button in the option in the
Polyspace Analyzer dialog. It contains the Polyspace settings for verifying
the current model.

® ppcom_ec.sh — The Polyspace Embedded Coder post preprocessing
command.

® polyspace_additional_file_list.txt — This file is created if the
Advanced option, Select Files is used in the Polyspace Analyzer dialog
box. This option allows files that are not part of the model to be analyzed
together with the model. For example these files could contain custom
lookup table code, custom stubs, device driver code etc. The Enable
additional file list option needs to be set together with configuring the
list of extra files to analyze.

Auto-generated files in the model directory

These files are generated from the model for each verification when it is
started, and do not need archiving:

® model name_drs.txt — The DRS information extracted automatically
from the model.

® polyspace_include_dir_list.txt — List of compilation include
directories extracted from the mode.

® polyspace_file_list.txt — List of file contained in the model to analyze

* model name_last_parameter.txt — The last set of parameters used in
the Polyspace Analyzer dialog box.

3 Polyspace® Utilities

3-10

Code Generator Specific
Information

e “Polyspace Model Link SL Product” on page 4-2
® “Polyspace Model Link TL Product” on page 4-12

4 Code Generator Specific Information

Polyspace Model Link SL Product

In this section...

“Overview” on page 4-2

“Subsystems” on page 4-2

“Default Options” on page 4-2

“Data Range Specification” on page 4-3

“Code Generation Options” on page 4-3

“Polyspace Analysis Options” on page 4-5

Overview

The Polyspace Model Link SL product has been tested with Embedded Coder
software — see the Installation Guide for more information.

Subsystems

A dialog will be presented after clicking on the Polyspace for Embedded Coder
block if multiple subsystems are present in a diagram. Simply select the
subsystem to analyze from the list. The subsystem list is generated from the
directory structure from the code that has been generated.

Default Options
When using the Polyspace Model Link SL product, the software sets the
following Analysis options by default:

-sources path_to_source_code
-desktop

-D PST_ERRNO

-D main=main_rtwec

-I matlabroot\polyspace\include
-1 matlabroot\extern\include

-I matlabroot\rtw\c\libsrc

-I matlabroot\simulink\include

-I matlabroot\sys\lcc\include
-0S-target no-predefined-0S

Polyspace® Model Link™ SL Product

-results-dir results

Note matlabroot is the MATLAB installation directory.

Data Range Specification

The software automatically creates a Polyspace Data RangeSpecification
(DRS) file using information from the MATLAB workspace and block
parameters. This DRS information is used to initialize each global variable
to the range of valid values, as defined by the min-max information in the
workspace.

The main sources of information are Simulink.signals and
Simulink.parameters.

You can also manually define a DRS file using the Project Manager
perspective of the Polyspace Verification Environment. If you define a DRS
file, the software appends the automatically generated information to the DRS
file you create. Manually defined DRS information overrides automatically
generated information for all variables.

For more information, see “Data Range Management” on page 2-9.

Code Generation Options
This section describes recommended configuration parameter settings for

Simulink® Coder™ software. MathWorks recommends using these options for
optimum use of Polyspace verification.

In the Code Generation tab:

1 Select Generate HTML report.

2 Select Include hyperlinks to model.

Note If you do not set this option, navigation from Polyspace results to the
model will not work.

4 Code Generator Specific Information

3 Set the system target file to be an appropriate ert.tlc (use the browse
button to locate).

This is an indication that the code generator is Embedded Coder software
(and not just Simulink Coder software, used for rapid prototyping).

In the Solver tab:

1 Set the solver Type to Fixed-step,
2 Set the Solver to discrete (no continuous state).

This specifies that the code is generated for a target, and not for a
simulation based on continuous timing.

In the Interface panel tab:

1 Ensure that Generate reusable code is not selected.

Setting this option will generate more warnings in the Polyspace results.

4-4

Polyspace® Model Link™ SL Product

Polyspace Analysis Options

This section describes recommended Analysis options for verifying code
generated with Embedded Coder software. MathWorks recommends setting
these options in your Polyspace project before verifying generated code.

If you have Polyspace Model Link SL software, you can specify the
Analysis options for your Polyspace Project by selecting Tools > Polyspace
> Polyspace Utilities > Configure Project in the Simulink model window.

Option

Recommended Value

Comments

Polyspace Project — Properties

-prog <session identifier> Specifies the application name. Use
characters valid for Unix file names.
This information is specified in the
Polyspace Project — Properties dialog box
as Project name.
For example, New_Project.
-author <your name> Specifies the name of the author of the
verification.This information is specified
in the Polyspace Project — Properties
dialog box.
-desktop Selected — When Specifies whether verification occurs on
checking MISRA the Polyspace Client or Polyspace Server.
Compliance (code MathWorks recommends using the Client
analysis). to perform MISRA analysis and the Server
Not Selected — When for code verification.
checking runtime errors
(code verification)

-1 See Comments Specifies the name of a folder to include

when compiling C sources. You can specify
only one folder for each I, but can use
the option multiple times.

A script to automatically determine -I
based on buildInfo is available

4-5

4 Code Generator Specific Information

4-6

Option

Recommended Value

Comments

-results-dir

<results dir>

Specifies the folder in which Polyspace
software saves verification results. You
can specify a relative path. However, be
careful if you plan to launch verification
remotely over a network, or if you plan to
copy the project configuration file using
the "Save as" option.

General Options

-sources
-sources-list-file

See Comments

Specifies a list of source files to be verified.
You must enclose the list of source files in
double-quotes, separated by commas.

® -sources "filel1[file2[...]]1"
(Linux and Solaris™) -

® -sources "fileil[,file2[, ...]1]"
(Windows®, Linux and Solaris)

® -sources-list-file file name (not
a graphical option)

You can specify multiple files using
UNIX® standard wildcards.

The software compiles the source files in
the order in which you specify them.

If you do not specify any files, the software
verifies all files in the source directory in
alphabetical order.

Note The specified files
must have valid extensions:
*.(c|C|cc|cpp|CPP|cxx|CXX)

Polyspace® Model Link™ SL Product

Option

Recommended Value

Comments

A script to automatically determine
-sources based on buildInfo is
available.

-verif-version

1.0

Specifies the version identifier of the
verification. You can use this option to
identify multiple verifications of the same
project. This information is identified in
the GUI as the Version.

Target/Compilation O

ptions

-d

See Comments

Defines macro compiler flags used during
compilation.

Use one d for each line of the Embedded
Coder generated defines.txt file.

Polyspace Model Link SL does not do this
by default.

-0S-target

Visual

Specifies the operating system target for
Polyspace stubs.

This information allows the verification to
use appropriate system definitions during
preprocessing in order to analyze the
included files properly.

-target

1386

Specifies the target processor type. This
allows the verification to consider the
size of fundamental data types and the
endianess of the target machine.

You can configure and specify generic
targets. For more information, see Setting
Up Project for Generic Target Processors
in the Polyspace Products for C User’s
Guide.

Compliance with standards Options

4-7

4 Code Generator Specific Information

4-8

Option

Recommended Value

Comments

-dos

Selected

You must select this option if the contents
of the include or source directory comes
from a DOS or Windows file system. The
option allows the verification to deal with
upper/lower case sensitivity and control
characters issues. Concerned files are:

e Header files — All include folders
specified (-I option)

® Source files — All source files selected
for the verification (-sources option)

-misra?2

[all-rules |
file name]

Specifies that the software checks coding
rules in conformity to MISRA-C:2004. All
MISRA checks are included in the log file
of the verification. Options:

® all-rules — Checks all available
MISRA C® rules. Any violation of
MISRA C rules is considered a warning.

e filename — Specifies an ASCII file
containing a list of MISRA® rules to
check.

-includes-to-ignore

<MSVC dir>\VC\include

Specifies files or folders that are excluded
from MISRA rules checking (all files

and subfolders within the selected
folder). This option is useful when you
have non-MISRA C conforming include
headers.

Polyspace inner settings Options

Polyspace® Model Link™ SL Product

Option

Recommended Value

Comments

-variables-written-
before-loop

public

Specifies how the generated main
initializes global variables.

By selecting public, every variable except
static and const variables are assigned
a "random" value, representing the full
range of possible values

-functions-called
-in-loop

unused

Specifies how the generated main calls
functions.

By selecting unused, every function is
called by the generated main unless it is
called elsewhere by the code undergoing
verification.

-ignore-float-
rounding

Selected

Specifies how the verification rounds
floats.

If this option is not selected, the
verification rounds floats according to the
IEEE® 754 standard — simple precision
on 32-bits targets and double precision on
targets that define double as 64-bits.

When you select this option, the
verification performs exact computation.

Selecting this option can lead to results
that differ from "real life," depending on
the actual compiler and target. Some
paths may be reachable (or not reachable)
for the verification while they are not
reachable (or are reachable) for the actual
compiler and target.

However, this option reduces the number
of unproven checks caused by float
approximation.

Precision/Scaling Options

4-9

4 Code Generator Specific Information

4-10

Option

Recommended Value

Comments

-0

2

Specifies the precision level for the
verification.

Higher precision levels provide higher
selectivity at the expense of longer
verification time.

MathWorks recommends you begin with
the lowest precision level. You can then
address red errors and gray code before

relaunching Polyspace verification using
higher precision levels.

Benefits:

A higher precision level contributes to a
higher selectivity rate, making results
review more efficient and hence making
bugs in the code easier to isolate.

The precision level specifies the algorithms
used to model the program state space
during verification:

® .00 corresponds to static interval
verification.

® -01 corresponds to complex polyhedron
model of domain values.

® -02 corresponds to more complex
algorithms to closely model domain
values (a mixed approach with integer
lattices and complex polyhedrons).

® -03 is suitable only for units smaller
than 1,000 lines of code. For such code,
selectivity may reach as high as 98%,
but verification may take up to an hour
per 1,000 lines of code.

Polyspace® Model Link™ SL Product

Option

Recommended Value

Comments

-from

scratch

Specifies the phase from which verification
starts.

You can use this option on an existing
verification to elaborate on the results
that you have already obtained. For
example, if a verification ran -to passi,
you can restart the verification -from
pass1 to reduce verification time.

Note the following:

¢ This option can be used only for client
verifications. All server verifications
start from scratch.

e All options other than scratch can be
used only if the previous verification
was launched using the option
-keep-all-files.

® You cannot use this option if you modify
the source code between verifications.

-to

c-compile — When
checking MISRA
compliance only.pass0

— When verifying code for
the first time.

pass4 — When performing
subsequent verifications
of code.

Specifies the phase after which the
verification stops. Each verification phase
improves the selectivity of your results,
but increases the overall verification time.

Improved selectivity can make results
review more efficient, and hence make
bugs in the code easier to isolate.

MathWorks recommends you begin by
running -to passO (Software Safety
Analysis level 0) You can then
address red errors and gray code before
relaunching verification using higher
integration levels.

4-11

4 Code Generator Specific Information

4-12

Polyspace Model Link TL Product

In this section...

“Overview” on page 4-12

“Subsystems” on page 4-12

“Data Range Specification” on page 4-12
“Lookup Tables” on page 4-13

“Code Generation Options” on page 4-14

Overview

The Polyspace Model Link TL product has been tested with the some release
of the dSPACE Data Dictionary version and TargetLink Code Generator - see
the Installation Guide for more information.

As the Polyspace Model Link TL product extracts information from the
dSPACE Data Dictionary remember to regenerate the code before performing
a Polyspace verification. This ensures that the Data Dictionary has been
correctly updated.

Subsystems

A dialog will be presented after clicking on the Polyspace for TargetLink
block if multiple subsystems are present in a diagram. Simply select the
subsystem to analyze from the list.

Data Range Specification

The tool automatically creates Polyspace Data RangeSpecification (DRS)
information using the dSPACE Data Dictionary for each global variable. This
DRS information is used to initialize each global variable to the range of valid
values as defined by the min-max information in the data dictionary. This
allows Polyspace software to model every value that is legal for the system
during its verification. Further the Boolean types are modeled having a
minimum value of 0 and a maximum of 1. Defining the min-max information
carefully in the model can help Polyspace verification to be more precise
significantly because only range of reels values are analyzed.

Polyspace® Model Link™ TL Product

You can also manually define a DRS file using the Project Manager
perspective of the Polyspace Verification Environment. If you define a DRS
file, the software appends the automatically generated information to the DRS
file you create. Manually defined DRS information overrides automatically
generated information for all variables.

DRS cannot be applied to static variables. Therefore, the compilation flags -D
static=is set automatically. It has the effect of removing the static keyword
from the code. If you have a problem with name clashes in the global name
space you may need to either rename one of or variables or disable this option
in Polyspace configuration.

Lookup Tables

The tool by default provides stubs for the lookup table functions. This behavior
can be disabled from the Polyspace menu — see for more information. The
dSPACE data dictionary is used to define the range of their return values.
Note that a lookup table that uses extrapolation will return full range for
the type of variable that it returns.

Default Options
The following default options are set by the tool:

-1

path to source code

-desktop

-D
-1
-1
-1
-1
-1
-1
-1
-1

PST_ERRNO
dspaceroot\matlab\TL\SimFiles\Generic
dspaceroot\matlab\TL\srcfiles\Generic
dspaceroot/matlab\TL\srcfiles\i86\LCC
matlabroot\polyspace\include
matlabroot\extern\include
matlabroot\rtw\c\libsrc
matlabroot\simulink\include
matlabroot\sys\lcc\include

Note dspaceroot and matlabroot are the dASPACE and MATLAB tool
installation directories respectively.

4-13

4 Code Generator Specific Information

4-14

Code Generation Options

From the TargetLink Main Dialog, it is recommended to set the option “Clean
code” and deselect the option “Enable sections/pragmas/inline/ISR/user
attributes”.

When installing the Polyspace Model Link TL product, the tlegOptions
variable has been updated with "PolyspaceSupport’, ’on’ (see variable in
’C:\dSPACE\Matlab\TI\config\codegen\tl_pre_codegen_hook.m’ file).

Glossary

Atomic
In computer programming, atomic describes a unitary action or object
that is essentially indivisible, unchangeable, whole, and irreducible.

Atomicity
In a transaction involving two or more discrete pieces of information,
either all of the pieces are committed or none are.

Batch mode
Execution of Polyspace from the command line, rather than via the
Graphical User Interface.

Category
One of four types of orange check: potential bug, inconclusive check,
data set issue and basic imprecision.

Certain error
See "red check.”

Check
A test performed by Polyspace during a verification and subsequently
colored red, orange, green or gray in the Run-Time Checks perspective.

Code verification
The Polyspace process through which code is tested to reveal definite
and potential runtime errors and a set of results is generated for review.

Dead Code

Code which is inaccessible at execution time under all circumstances
due to the logic of the software executed prior to it.

Development Process
The process used within a company to progress through the software

development lifecycle.

Green check
Code has been proven to be free of runtime errors.

Glossary-1

Glossary

Glossary-2

Gray check

Unreachable code; dead code.

Imprecision
Approximations are made during a Polyspace verification, so data
values possible at execution time are represented by supersets including
those values.

mcpu
Micro Controller/Processor Unit

Orange check
A warning that represents a possible error which may be revealed upon
further investigation.

Polyspace Approach
The manner of use of Polyspace to achieve a particular goal, with
reference to a collection of techniques and guiding principles.

Precision
An verification which includes few inconclusive orange checks is said
to be precise

Progress text
Output from Polyspace during verification to indicate what proportion
of the verification has been completed. Could be considered as a “textual
progress bar”.

Red check
Code has been proven to contain definite runtime errors (every
execution will result in an error).

Review
Inspection of the results produced by a Polyspace verification.

Scaling option
Option applied when an application submitted to Polyspace proves to be
bigger or more complex than is practical.

Glossary

SelectivityPolyspace
The ratio (green checks + gray checks + red checks) / (total amount of
checks)

Unreachable code
Dead code.

Verification

The Polyspace process through which code is tested to reveal definite
and potential runtime errors and a set of results is generated for review.

Glossary-3

	toc
	Getting Started with Polyspace Model Link Products
	Overview of Polyspace Model Link Products
	Getting Started with Model Link Products
	Overview
	Creating a Simulink Model and Generating Production Code
	Starting the Polyspace Verification
	Fixing an Error in the Design and the Simulink Model
	Base Workspace vs. Polyspace Data Ranges
	Creating Signals with ExportedGlobal Storage Class
	Setting Signal Ranges
	Re-Generate Code and Launch the Polyspace Verification Again
	Can You Find More Bugs in the Model?

	Setting Data Ranges Using Block Parameters

	Advanced Setup Options
	Advanced Setup
	Handwritten Code
	Target Production Environment
	Creating a Polyspace Configuration File Template
	Data Range Management
	Main Generation for Model Verification
	Main for Generated Code
	Annotating Blocks to Justify Known Checks or Coding-Rules Violat

	Polyspace Utilities
	Polyspace Utilities
	Overview of Polyspace Utilities
	Configuring Polyspace Project

	Polyspace Commands Available in Batch Mode as M-Functions
	Example with Embedded Coder product:
	Archives Files Produced for the Polyspace Verification
	Template files located in MATLAB installation directory\polyspac
	Files used in the model directory
	Auto-generated files in the model directory

	Code Generator Specific Information
	Polyspace Model Link SL Product
	Overview
	Subsystems
	Default Options
	Data Range Specification
	Code Generation Options
	Polyspace Analysis Options

	Polyspace Model Link TL Product
	Overview
	Subsystems
	Data Range Specification
	Lookup Tables
	Default Options

	Code Generation Options

	Glossary

